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Abstract


Anti-virus protection is, or should be, an integral part of any Information Systems operation, be it personal or professional. However, our observation shows that the design of the actual anti-virus system, as well as its implementation and maintenance, can range from haphazard and sketchy to almost totally nonfunctional. 


While systems theory in sociological disciplines has come under much attack, it has much to offer in the management of integration of technological applications into daily operations. We will examine the 'anti-virus' strategy (Policy, Procedure, Software [selection, implementation, maintenance]), focusing on areas where the 'system' can fail. We will address this interaction from a business, rather than a personal computing, point of view. 


The Anti-Virus Strategy System will examine anti-virus strategies from a Holistic General Systems Theory perspective. By this, we mean that we will concern ourselves with the individual parts of the system, their functionality, and their interaction. We will draw from various IT models specifically designed to provide a holistic, forward-thinking approach to the problem, and show that for our strategy to flourish, we must concern ourselves with the system as a whole, not merely with its individual components. 

Introduction


Computer virus. System failure. These words bring to mind a computer system brought to its knees - data corrupted and time wasted. Is this an accurate picture? We hear arguments against investing in virus protection: 'Viruses are mythical. Our chances of getting hit by one are pretty rare.' Others tell us anti-virus software is a necessity: 'Viruses can cost our company a lot of money. Better safe than sorry.' What are we to believe? 


Let's assume that we don't have any anti-virus software. If we are 'hit' by a virus, the cost will be proportional to the value of our data and the value of our time. Independent studies  have shown that this cost can be quite high, depending on these factors as well as environmental factors such as how many computers we have (Note: If our data is of little or no value, and if our time is worthless, then we can well afford not to have an anti-virus strategy). 


We will assume here that our data is worth something to our company, and that our time also has a significant value. In this case, we will want to protect our computer system from viruses. We will concede for the purists among us that not all viruses are intentionally harmful, but stipulate that intentional harm is not requisite for actual harm. For our purposes, allocating disk space and CPU time and/or modification of files without knowledge and consent (implied or otherwise) constitutes damage, as do deliberate or unintentional disruption of work, corruption of data and the lost time mentioned earlier. Basically, we are saying viruses are bad and we want to protect against them (there may be some wonderful new virus out there in development that can help us, but that is beyond the scope of this paper). 


Fortunately, we are in luck. The very thing we need already exists: software, which will detect 100 percent of viruses as being known to be in the wild. In tests run against a library matched with several programs were capable of detecting all such viruses. The necessity of detection of 'lab' viruses is another matter, and will not be covered at this time.


Since we have such software, we should have no problems. However, there are problems. Something is wrong. Before examining the sources of the problem, a few comments on definitions we will be using are in order. 

Definitions


The definitions used here are pretty generic, and are adapted for use in an interdisciplinary approach to the problems addressed. Some among us would argue that the systems movement was born out of science's failures , but in this paper, we take the view that General System theory is a child of successful science, and as most children, it sees things through optimistic eyes. We have specifically avoided in-depth discussion of categorical schemes, generalizations, and other commonly used 'tools' of General Systems thought, and have focused instead on the simplest of the simple. The ideas in this paper are drawn heavily from very basic works in systems theory. They are not new ideas, but it is our hope that their application to the management of security and computer viruses will help us identify some of the problems we may be overlooking. 

General Systems Theory

A system is a set, or group, of related elements existing in an environment and forming a whole. Systems can be made up of objects (computers), subjects (our employees) and concepts (language and communication); they can be made up of any one or more of these elements. There are 'real systems' (those which exist independent of an observer), and 'conceptual systems' (those which are symbolic constructs). Our system, 'The anti-virus strategy system', is not so different from many others, in that it is composed of all three elements: computers (objects), people (subjects) and concepts (policies and ideas). Each of these systems has its own subsystems. For example, our system of networked computers consists of individual computers. These computers are comprised of yet more subsystems; microprocessors, resistors, disk drives, etc. Our system consists of both real and conceptual subsystems. A system can also be said to be a way of looking at the world, or a point of view . 

Concepts, laws, and models often appear in widely different fields  based upon totally different facts. This appears to be at least in part due to problems of organization, phenomena which cannot be resolved into local events, and dynamic interactions manifested in the difference of behavior of parts when isolated or in higher configurations. The result is, of course, a system which is not understandable by investigating their respective parts in isolation. One reason these identical principles have been discovered in entirely different fields is because people are unaware of what those in other disciplines are doing. General System’s theory attempts to avoid this overlap in research efforts. 


There are two main methodologies of General Systems research; the empirico-intuitive and the deductive theory. The first is empirical, drawing upon the things which regularly exist in a set of systems. It can be illustrated fairly easily, but lacks mathematical precision and can appear to the 'scientist' to be na‹ve. However, the main principles which have been offered by this method include differentiation, competition, closed and open systems, and wholeness - hardly na‹ve or worthless principles. The second method, basically, can be described as 'the machine with input', defined by a set 'S' of internal states, a set 'I' of input and a mapping 'f' of the product I x S into S (organisation is defined by specifying states and conditions). Self-organising systems (those progressing from lower to higher states of complexity, as in many social organisations) are not well suited to this approach, as their change comes from an outside agent. Our anti-virus strategy system is such a system and for this reason we will use the empirico-intuitive methodology. 

Classical system theory uses classical mathematics to define principles which apply to systems in general or to subclasses. General System theory can be called the doctrine of principles applying to defined classes of systems. It is our hope that we can stimulate thought on how already-known principles can help us in managing our anti-virus protection by examining the system as a whole. 

Holism


Our definition of holism, drawing where appropriate from the medical profession, is health-oriented, and focuses on maintaining and improving the existing health of the system. It does not focus on disease and illness. It is interesting to note that, while we have many terms that relate to compromised and infected systems, we do not seem to have many terms relating to 'well' computers. Holism operates under the assumption that the open system possesses an innate organising principle, with the interdependence of the parts having an effect on the total system health. Holism views symptoms of distress as signalling disharmonic conditions, from which we can learn how to adjust the system (feedback); it is open to a variety of approaches for attaining balance. The focus of holism is heavily slanted toward the correction of causal factors, not symptomatic relief. Thus, the role of the holistic practitioner is to facilitate the potential for healing . 

Anti-Virus Strategy Systems

Where do our anti-virus strategy systems fit in this picture? We hope to explore some answers to that question by first examining the components of our model system. Keep in mind, however, that the goal of this paper is not to provide we with answers, but rather to stimulate new ways of thinking about the problems we face daily. 

Components 


Each of the components  contributes to the overall health of the system. Conversely, each can contribute to the illness of the system. For instance, our computer can contribute to the health of the system by functioning properly. If the hard drive crashes, a disharmonic condition is introduced. Our managers contribute to the overall well-being of the system, as long as they perform correctly. However, if one of them intentionally or unintentionally infects a computer with a virus, he or she contributes to the illness of the system. Our software contributes to the wellness by keeping employees reassured, and by keeping viruses out. If it is disabled by an employee desirous of more speed upon boot, or if it does not do its job in virus detection, it contributes to the illness or chaos in the system. There are other factors not shown, as the anti-virus strategy system model does not stop at the boundary of the company. The model includes our Internet service provider, virus writers, makers of electronic mail front-ends, anti-virus product tech support people and more. For the purposes of this paper, we must draw an artificial boundary. We mention the rest to give we food for thought, and to illustrate that boundaries are not static. 

Programs Policy and Procedures 
(Selection, Implementation and Maintenance) 


Where do we begin in examining the interaction of our chosen system elements? Let's start with the software selection. Anti-virus software is selected based on a wide number of criteria. While some of these criteria are beneficial, several are counterproductive at best. We need to be aware of exactly how our company's software is being chosen, and not leave this vital aspect of software selection up to people who do not have the experience or expertise to make a selection that will maximize our organization’s protection against viruses. 


Does our anti-virus software detect all of the viruses which are a real threat to our organisation? Before we glibly answer yes, we should recognise that all products are far from created equal, and that even the best products will not achieve this goal if not properly maintained. Consider the following: 


When asked what happens to two blocks of copper initially at different temperatures left alone together in an insulated container, students will reply that the blocks will come to the same temperature. Of course, if asked how they know, they usually say "Because it is a law of nature"...the opposite is true...it is a law of nature because it happens.

Apply this to wer anti-virus software. Does it catch viruses because it is anti-virus software? If so, we can depend on it, as its name defines what it is. But, if we even loosely apply this concept, we will see that it is anti-virus software because it catches viruses - and if it does not, then what does that make it? 

Remember the following quote: 

'If we call a tail a leg, how many legs has a dog?'
'Five?'
'No, Four. Calling a tail a leg doesn't make it a leg' [11]

Maintenance of our software is another critical issue. Maintenance refers not to the upgrade, but to the maintaining of the software on a daily basis. What does it require to run? Are we supplying what it needs to live? Or is it merely surviving? Does it have adequate memory, power, disk space to run optimally and lessen the chance our employees will disable it? Is it in an environment free from other programs which may hinder its performance? If we cannot answer yes to these questions, we are not providing an environment for this element of our strategy system which will allow it to remain viable. It will not survive. Like living systems, the anti-virus strategy system requires a favorable environment, else the system will adapt. Unfortunately, in the case of this system, adaptation can mean software becoming disabled by the user component of the system, or overridden by a competing software component. All this, and we have not even added viruses which by design cause a problem to the system by the introduction of instability. 


Even if we have the best anti-virus software, and are running it optimally, there can still be problems. Software is just one part of the strategy system. Policies and procedures play an important role in the overall strategy. Even the viruses we mentioned earlier play a part in this system. Then there are the least predictable aspects of the system, the human beings. How complex is this system? How much should we expect the people involved to understand? 


Ackoff defines an abstract system as one in which all of the elements are concepts, whereas a concrete system is one in which at least two of the elements are objects . As we can see, our system is concrete. It is also by design an open system, one into which new components may be introduced. Some of these components are by nature 'unknown' (i.e. actions of people, how software may react, viruses which may appear). 


One of the systems theory approaches we can draw from here to help illustrate the problem comes from what is sometimes called the Square Law of Computation. This means basically that unless we can introduce some simplifications, the amount of computation involved in figuring something out will increase at least as fast as the square of the number of equations. Consider all of the interactions between humans, computers, and software, and we will see why it is impossible to precisely calculate what the results of all of those interactions will be. We cannot even measure them. In other words, we cannot possibly anticipate all of the problems we will encounter in trying to keep wer company's data safe from viruses, because we cannot possibly calculate the interactions which will occur once we begin trying to formulate a strategy. Needless to say, these interactions create 'problems'. 


If we examine our anti-virus strategy in various ways, we may be able to see things more clearly. Another helpful way in which we can view our system is as an expression, such as the terms of a set. For instance, the notation: 


Let x stand for marriage Let y stand for carriage Let z stand for bicycle


The set [x,y,z] is simple enough for anyone to understand. Using names in sets takes us to the more complex:[The look on our face when we saw our first child, a proof that Vesselin Bontchev is not the Dark Avenger, an atom of plutonium]; wherein the first no longer exists (or possibly never did); the second has not yet existed, and the third is out of reach of the common man. 


If we were to be asked for the meaning of the ... in the set [Alan, Dmitry, Fridrik...] would we say the ... represented men's names? Names of programmers? Names of programmers who make anti-virus software? Names of people not from the United States?What is the rule for determining the meaning of what is unstated? Is there some unwritten heuristic of which our employees are not aware? What is the meaning of the three dots in our set? 


This has a particular application to policy. Users can easily understand, 'Do not turn the computer off if we find a virus'. Can they as easily understand, 'Do not reset the computer if we find a virus'? Can they understand, 'In the event of a suspected virus, call the administrator or take appropriate action'? What is a suspected virus? Is it any time the computer system seems to act strangely? Is it only when the letters fall off? After all, that's what viruses do, right? What is appropriate action? [Turn off the computer, Call our supervisor, Reboot the computer, ...] What is the meaning of the ... in this set? 

System Failure and Measurement 


We say the system is failing for three reasons. It is not performing as intended. It is producing results other than expected. It is not meeting its goal. The objective is NO VIRUSES. However, in addition to often neglecting to define what 'no viruses' actually means, we are frequently unaware of how 'no viruses' can mean different things to different people. Not performing as intended could mean it finds some viruses but not all, or it finds all but only removes some. Unexpected results could mean it crashes 1 out of every 6000 machines, or produces system degradation we did not anticipate (if this is the case, does the fault really lie with the product for producing the degradation or we for not anticipating?) Not meeting its goal most likely means failing to keep out viruses. However, to some people, this is a different goal from 'no viruses'. 


How is this possible? Isn't 'no viruses' a simple concept? In a word, no. When there is a malfunction, i.e. a virus is found, the natural tendency is to look for the cause within the system. We tend to blame the problem on the variation of the system from its 'desired' behaviour. It could be the fault of the program, the employee, the policy. We tend to blame the program as it is the part of the system most closely identified with the failure as immediately perceived. However, consider for a moment that, to our employee, 'no viruses' means simply that. No viruses are found. Following that line of thought, finding 'no viruses' would be a system success - that is, until it brought our operation to a halt. We see, to some people, 'no viruses' means that none are seen or observed, and not that none are actually operational in the system. We plan grandiose policies and procedures around finding a virus and make no space for 'no viruses' as a possible failed variation. If we find 'no virus', we need to be very sure it is not due to our employees disabling our software, or our software not finding the virus. 


Many system 'improvements' are possible which in reality doom the system. Faulty assumptions and goals are often at the root of this problem. For instance, it is obvious that all of our computer workers must, under dire penalty, refrain from bringing disks from home into our office. We implement this policy. We assume they will comply. Our goal is compliance, not 'no viruses'. If the goal was 'no viruses', we would be forced to be more realistic.Consider the following two statements: 


We have clean, working computers and by not bringing in software, we can keep them that way. It will save us all a lot of time, and effort! 


If we bring in disks, we will probably infect our office computers. It will cost us all a lot of money.


In the first instance, the focus is on the well machine. Everyone wants well machines. People like to be part of winning teams, and participate in things that are nice. 


In the second, the focus is on the sick machine. None of our people would have viruses on their home computers. So, this must not apply to them. And if they do break the rule, we have already set them up to be afraid to tell we. After all, they don't want to cost we a lot of money and they certainly don't want to be known as the culprit for infecting the office computers. 


How do we measure the performance of our anti-virus strategy system? Not very well. If we find some viruses, we say it's working. If we don't find any viruses, we say it's working. In some cases, we can apply 'we say it's not working' to these same sentences. There is no standard way in which we measure the success of the entire system. Only in the act of being out of control will the system be able to detect and bring back the control. 

Conclusion


The systems approach proposed here is a 'whole system' optimization. Think of it as the configuration of a system which will facilitate optimal performance. There exists, of course, a dilemma, in that at some time sub optimization may be necessary, or even the only possible approach. An approximation which is used may be a great deal better than an exact solution which is not . Nevertheless, our model will attempt to show ways to optimize system performance. Models are how we express things we want to understand and possibly change, designed in terms of something we think we already understand. Models sometimes present problems when we try to translate them into real world activities. With this in mind, I would like to suggest a simple model which may help us begin to find ways to find a solution to the problem of designing a workable anti-virus strategy. 

Using a holistically modelled approach, we would strive to maintain the existing health of the system. This assumes we have a healthy system to begin with. This requires we not depend on our belief that our software is correctly installed and operational, and that our employees know how to use it and are using it, and that our equipment is functional, and that our policies are correct and being followed... It requires that we actually take it upon ourselves to designate people to ensure that our system is optimal to begin with. If we are not willing to do this, we cannot expect to restore the system to health. The focus should shift from 'blame' to 'responsibility'. This may require investment on our part. We may need to update equipment. We may need to train employees. We may need to purchase software. We may need to subscribe to publications which can keep our employees up to date on trends in virus and security matters. 


We will need to monitor feedback between various aspects of our anti-virus strategy system. We have not discussed feedback at any great length in this paper, due to the number of elements of the system and the complexity of the feedback. However, using the empirico-intuitive General Systems theoretical approach defined earlier in this paper, we should be able to determine the sorts of feedback which are required to keep our system functioning optimally. If there is NO feedback, we can rest assured our system will fail. Lack of feedback produces entropy. In simple terms, entropy can be called the steady degradation or disorganization of a society or a system. This is not what we want for our system. we want to move the system into organisation and order, high rates of probability and certainty. As we discussed earlier, this happens when information is processed. The information can be communication of any type between any elements of the system. 


Our current focus seems to be on the existing illnesses in our systems. If open systems indeed, as suggested, possess an innate organising principle, perhaps we should be paying more attention to what the elements of our systems are telling us. We could learn the sorts of information required to maintain organised reliability. We could learn the amount and types of feedback required to process information optimally, and to keep the system both desirably adaptive and from adapting negatively. We must examine our systems as a whole, including all of the parts, as best we can, to determine what the elements and the system are telling us. In the case of our anti-virus strategy systems, we have yet to determine what that message is. Many of us have not even yet defined the elements of the system, the system boundaries, or the goal of the system. 


It is clear that there are disharmonic conditions in the 'Anti-virus strategy systems' of most companies; if there were not, no one would be attending this conference or reading this paper. It is also clear that the way we traditionally approach these problems is not working. We have been using these approaches for a long time, and the problems are not going away. Drawing from the holism model, one thing we can do is examine causal factors, instead of focusing on symptomatic relief. We need to examine more closely the interdependence of the parts of our system, and as security professionals, should facilitate the potential for healing our systems. It is hoped that some of the ideas mentioned in this paper can provide a starting point for this. 

Can Cryptography Prevent Computer Viruses?

 

Abstract

 


The relationship between cryptography and virus prevention is anything but simple.  Since the beginning of the computer virus problem, people have proposed solutions involving some form of cryptography; but cryptography plays only a minor role in the solutions we actually use today.  Encryption can also make virus prevention more difficult, by providing viral hiding places inside the objects that it protects.  This paper will provide an overview of the ways that encryption technology impinges on virus protection and related security efforts, and provide some understanding of how encryption can help, or hurt, the efforts of the good guys.

 

Cryptography Explained

 


For centuries, cryptography has been used to keep secrets.  In traditional symmetric single-key cryptography, a message (the "plaintext") is transformed using a key, into another form (the "ciphertext") from which the plaintext cannot be recovered without knowing the key (or, in reality, from which it is very difficult to recover the plaintext without knowing the key).  Two people who both know the key can communicate securely even through an insecure channel as long as the key is kept secret; an attacker intercepting a ciphertext message cannot determine its plaintext content, lacking the key.  Converting a plaintext message into the corresponding ciphertext is called "encryption".  Converting ciphertext into plaintext by use of the key is "decryption".  Converting ciphertext into plaintext without using the key is part of "cryptanalysis", the science of code-breaking.

 


A related use of cryptography is the production of modification-detection codes, also known as cryptographic checksums or cryptographic hashes.  A modification-detection code is a small number (typically between 16 and 128 bits long) which is derived by an algorithm from a large dataset, in such a way that it is very difficult to find another different dataset for which the algorithm produces the same small number.  One important use of modification-detection codes, as suggested by the name, is to determine whether or not a file has changed, without having to maintain a complete copy of the file for later comparison.  By storing only the much smaller modification-detection code corresponding to the original state of the file, it is possible to verify (with high probability) that the file is unchanged at a later time, by re-executing the algorithm and verifying that the result is the same as the stored value.  Verifying that a dataset has not changed is often referred to as verifying the "integrity" of that data.

 


In recent years, asymmetric cryptographic algorithms have appeared, in which different keys are used for encryption and decryption, and someone knowing only the decryption key cannot feasibly determine the encryption key.  This has made digital signature technology possible: if I generate a pair of keys, keep the encryption key to myself, and reveal the decryption key to the world, I can now produce a message, encrypt it with the secret encryption key, and publish it.  Others can verify that the message was indeed produced by me (or at least by someone who knows my secret encryption key), by using the publicly-available decryption key to decrypt the message.  (In practice, asymmetric cryptographic algorithms are very slow, and real digital-signature systems usually involve computing a cryptographic hash of the message and encrypting that smaller piece of data using the asymmetric encryption key; but that is a detail.)  

 


For a good, and often amusing, survey of modern cryptographic algorithms and how they are used in various popular communication protocols, see [1].  The best-known asymmetric cryptosystem, used for both secrecy and digital signing, is probably PGP.

 


As the Net and the Web move into more central positions in the life of the world, the functions that cryptography provides (including secrecy, integrity, and digital signatures) become more important, and cryptographic functions can be found in more places, doing more things.  Bruce Schneier writes in :

 

From e-mail to cellular communications, from secure Web access to digital cash, cryptography is an essential part of today's information systems. Cryptography helps provide accountability, fairness, accuracy, and confidentiality. It can prevent fraud in electronic commerce and assure the validity of financial transactions. It can prove our identity or protect our anonymity. It can keep vandals from altering our Web page and prevent industrial competitors from reading our confidential documents.  And in the future, as commerce and communications continue to move to computer networks, cryptography will become more and more vital. 

 


Cryptographic functions have always been present in computer systems, but they have usually been relegated to a few obscure utility programs, function calls, or extra-cost add-ons.  We are now starting to see rich cryptographic functions incorporated into end-user operating systems and widely-deployed applications.  What are the implications of the increasing power and ubiquity of cryptography for the battle against computer viruses?  How do viruses use cryptography, how do anti-virus programs use it, and what role does it play in the design of present and future security systems that can help us make our computers resistant to viruses and related threats?  These are the questions we intend to address in the rest of this paper.

 

Cryptography in Computer Viruses
 


Some computer virus authors have made use of cryptography themselves, in attempts to make their creations more difficult to detect or more difficult to analyze, or as part of the destructive or annoying payloads they carry.  While cryptography does not play a key role in most of the viruses currently responsible for the virus problem, the issue of cryptography in computer viruses is worth at least a passing glance.

 


The most common use of encryption in computer viruses is as part of polymorphism.  A polymorphic virus is one that changes form as it spreads, so that two different files infected with the virus will not necessarily have any significant byte-strings in common.  In machine-language viruses, polymorphism is usually achieved by splitting the virus into three different sections: a short piece of decryptor code, a cryptographic key, and the main functional part of the virus.  When the virus creates a new copy of itself, it selects a new cryptographic key, encrypts the main functional part of itself with that key, and generates (using any of a variety of methods) a new implementation of the decryptor code.  When the virus executes, the decryptor code runs and uses the key to decrypt the main functional part, which then receives control.  Because changing the key changes the bytes in the encrypted body, and because the decryptor code and the key vary with each copy of the virus, two different instances of the virus will contain very different byte-strings.


Note that this technique of encryption for polymorphism is using cryptography only to transform data, not to keep a true secret.  Since the decryption key is stored within each instance of the virus, a virus analyst can always find the contents of the main virus body, simply by doing the decryption directly, using the stored key (and in fact this is the most common way that anti-virus programs detect this kind of polymorphic virus).

 

A few viruses use encryption in a more powerful way, by encrypting parts of themselves and not including the decryption key within the virus.  Without the decryption key, a human analyst cannot determine what that part of the virus would do if it were to be decrypted and executed.  Of course, without the decryption key the virus itself cannot decrypt the hidden code, either!  To be effective, such a virus must have a way of eventually finding the key, and recognizing that it has found it.  An early DOS virus, for instance, searched the filesystem for a filename having a certain checksum, and when that filename was found it was used as a decryption key to decrypt a certain piece of its own code, which was then executed.  Because the encryption was weak and the checksum algorithm easy to reverse-engineer, anti-virus workers were able to determine that the filename used as the key was associated with a particular Bulletin Board program, and the encrypted code would alter the program's configuration files to introduce a security hole.  This sort of encryption can in theory make parts of a virus opaque to analysis; in practice however the technique has not had any significant impact on the world.  

 


A more significant use of encryption in viral payloads involves using encryption as payload.  Some macro viruses for Microsoft Word, for instance, will on a certain date, or with a certain probability, save the infected document with a password that is not known to the user.  This is similar in effect to simply erasing the file (since the user no longer has access to its contents), but is psychologically more frustrating, since the user has the feeling that they data is all still there, if only the password could be found.  Some viruses use a fixed password (so the user can in fact recover the data after reading a sufficiently-detailed description of the virus), while others use a randomly-generated password (so recovering the data requires cryptanalysis of the encrypted document; this cryptanalysis is in fact often possible in earlier versions of Word, but more modern versions use stronger encryption).  In machine-language viruses, the One-Half virus gradually encrypts parts of the hard drive on an infected machine, and while the virus is in memory it dynamically decrypts any encrypted sectors that are read.  Removing the virus from the hard disk without undoing the encryption can result in a computer that is disinfected, but whose hard disk contains some garbled data.


The last use of encryption by malicious software that we will mention involves Remote Access Trojan horse programs, sometimes called "back doors".  A Remote Access Trojan horse is a non-viral malicious program which, once the user has been tricked into executing it or the attacker has otherwise arranged for it to be installed on the target machine, listens to the network for queries and commands from the attacker.  Some of these Trojan horses use encryption on the communication channel between the attacker and the listening program, for the traditional reasons of secrecy When the communication channel is encrypted, it is more difficult to automatically recognize traffic flowing between an attacker and a compromised host.

 
Cryptography and Virus Prevention
 


Cryptography is difficult to get right. Even if I have a perfect cryptographic algorithm that no one alive can beat, turning that algorithm into a working system involves multiple layers of architecture, design, coding, and user interface, and a mistake anywhere along the way can render the resulting system completely insecure, despite the soundness of the basic algorithm.  As we analyze the usefulness of various cryptographic techniques in the prevention of computer viruses, we will generally assume that all the hard work has been done right: that the systems are not only based on sound cryptographic algorithms, but are correctly and securely designed and implemented.  Needless to say, if that is not true and the systems are in fact insecure, their usefulness in virus prevention will be significantly reduced!

 

Cryptography as a roadblock

 


We will first consider a class of cases in which cryptography is a barrier to effective virus prevention.  As outlined in, there are a number of situations in which encryption of potentially-infected data prevents that data from being examined for the presence of viruses.  In particular, whenever encryption has been used to restrict the ability to read a dataset to some set of entities, and the entity attempting to check the dataset for viruses is not in that set, the encryption will prevent the virus check.  Some of the most common cases of this are:

 

·       A virus scanner in a network gateway or firewall unable to check encrypted traffic,

·       A virus scanner in a mail gateway unable to check encrypted mail for infected attachments,

·       A virus scanner in a mail gateway unable to check encrypted attachments for infection,

·       A virus scanner on a file server unable to check encrypted files stored on the server,

·       A virus scanner on a client machine unable to check encrypted files stored locally.

 


There are a number of measures available to address this problem.  

 


Users making use of encryption may be required to have up-to-date real-time virus scanning in place on the client machine, where it has the best chance of seeing the to-be-encrypted objects while they are still plaintext.  It is notoriously difficult, especially with the proliferation of mobile users and laptop computers, to track all the client systems that might be attached to our enterprise intranet and ensure that certain software is always installed and active, although various commercially-available enterprise anti-virus solutions take some steps in that direction.  On the other hand, having good anti-virus software on client systems is desirable in any case, so most enterprises already have such a requirement, however well or badly they are able to enforce it.

 

Cryptographic facilities in the enterprise may be configured to always include a particular enterprise administrative key when encrypting a dataset, and virus-scanning processes may be given that key.  But not all cryptographic facilities include such a feature (the Windows 2000 recovery key has a similar but not directly applicable function, and recent enterprise versions of PGP apparently have a related feature), and the risk posed by the possible theft of that administrative "read everything" key may be too high to bear.  

 


End-to-end encryption may simply be forbidden in an enterprise, with all traffic checked for viruses before it leaves the trusted intranet, and encrypted afterward for travel outside (via for instance a Virtual Private Network).  But enforcing such a ban will in practice be difficult.

 


It's worth noting here that access control methods besides encryption have similar problems; in Microsoft Windows NT, for instance, it is possible to set a file's permissions so that not even an administrator can read the file in the normal way.  But users generally want such files to be backed up, and administrators want such files to be scanned for viruses.  So the operating system file-access routines include the notion of "backup semantics", which allow accessing even files which are normally not readable except by a particular user, and most commercial anti-virus programs use this feature in virus checking.  The tradeoff here is similar: it is desirable to let certain processes (backup programs, virus scanners) access even data that is nominally readable only by a small set of users, but doing so has certain security implications; if an administrative account that can use backup semantics is compromised, or if the enterprise administrative key is stolen, an attacker can access everything in the system, just as the virus-scanner can.

 

Cryptography as a resource
 


We have seen that cryptography can be used by viruses, and can interfere with virus prevention measures, but surely we can also derive some benefit from cryptographic techniques in our efforts to prevent computer viruses?

 


A virus cannot infect what it cannot see.  This would suggest that encrypting our programs and our program-carrying objects (such as Microsoft Office documents) might help protect them against viruses: if a virus cannot read the plaintext of a file, it will presumably not be able to alter the file in order to infect it.  Facilities to automatically encrypt everything written to disk have been available in various forms for many years.  With Windows 2000, Microsoft now offers a simple point-and-click method of encrypting some or all of the filesystem .
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In practice, though, the most successful viruses infect objects that are actually in use (programs that are being executed, documents that are being edited), and those objects must be present in decrypted form.  If the user is able to access the plaintext of a file to work with it, a virus running with the user's privileges is likely to be able to access it to infect it.  So encryption of files in the file system has not been, so far, an important part of virus prevention.

 


Encryption is traditionally used on communication channels, to prevent anyone intercepting traffic on the channel from reading the contents of messages.  Encryption of communication should similarly prevent programs and program-carrying objects from becoming infected in transit.  On the other hand, infection-in-transit has never been a significant part of the virus problem; secrecy, rather than virus protection, is by far the strongest reason to encrypt communications.

 


If encryption for secrecy is not a promising resource in the battle against viruses, perhaps we can get some mileage out of modification detection codes.  As long ago as 1987, Pozzo and Gray proposed [8] a system in which a cryptographic checksum is used to verify that a program has not been changed since it was installed, and to forbid execution of any program that fails that test.  No such system is currently in widespread use.  This may be simply because the makers of the few widespread virus-bedeviled operating systems have not chosen to implement the function; on the other hand actually implementing such a system involves solving some tricky problems.  In the home environment, there must be a simple and convenient mechanism whereby an unskilled user can install a new program, or upgrade an existing program; on the other hand, that mechanism must somehow be protected so that a virus cannot use it to install itself.  In the enterprise environment, while there may be a more skilled IT department competent to bring in and "bless" new programs, the process of distributing these new programs while again preventing viruses from similarly distributing themselves, presents a challenge.

 


Anti-virus programs have made more limited use of modification detection codes in detecting modifications to the anti-virus code itself.  Most anti-virus programs will detect, at some level, when the anti-virus code itself has been altered, and will warn the user and in some cases refuse to run.  This is useful, of course, only when the anti-virus program contains or consists of files of the same type that the active virus infects.  An anti-virus program that consists of binary executables will never detect in this way a virus that only infects office documents.  Anti-virus self-checking is a useful precaution, but it is not a major weapon in the battle.  Similarly, Windows 2000 contains a System File Checker, which apparently uses a modification detection code to detect changes to certain operating system files, and restore the original from a backup or CD-ROM when a change occurs.  This function does deter certain viruses, but that was not its primary purpose, and since it monitors only a small fraction of the executables on a typical computer, it provides only a little protection.

 


Close in idea-space to forbidding any program from running if it has been modified, is forbidding any program from running unless it is on a list of programs that are known (or at least believed) to be uninfected.  Cryptography is involved again, because the only feasible way of accomplishing this is to keep a list of the cryptographic checksums of each of the approved programs, and to allow execution of a program only if its checksum matches one in the list.  We know of no currently-available security package that does this for programs of all types; again there are significant administrative issues involved in the creation and distribution of the approved list, as well as in preventing a virus from adding the checksum of an infected program to the list.  But in the limited field of Office macros, there are at least two offerings that provide this function: both Symantec's Macro Virus Protection and F-Secure's Macro Control  allow the user (or administrator) to prevent the execution of any office macro that is not on the approved list.  While this should provide very complete protection against macro viruses, neither product seems to have been very successful in the marketplace.  Either customers simply don't know what they really need, or the administrative overhead involved in creating and maintaining approved-macro lists outweighs the increased protection against viruses.  (Both products come with a list of common clean macros known to the manufacturer, but of course many enterprises have their own extensive libraries of macros that would have to be added.)

 


If deciding which programs should be allowed to run on a case-by-case basis is too much work, perhaps we can simplify things using digital signature technology.  Can we prevent viruses by only accepting programs (or program-carrying objects) from people that we trust?  Anti-virus software (such as the Digital Immune System from Symantec) has begun to use digital signatures to ensure that what seems to be an anti-virus update is actually coming from a trusted source; can we use this ability in the wider anti-virus arena?

 


Microsoft Word 2000 contains a set of features that allow the macros in an Office document to be signed, and allows a user to specify that no macros should be allowed to run unless they are signed by someone who appears on a list of trusted signers (see figure 3).  
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Again, the idea here seems promising, but it is not clear how widely used or effective it will be in practice. In particular, if we elect to trust one or more people who are not sufficiently careful themselves and become infected with a macro virus, nothing in the macro-signing system will prevent at least the payload of the virus from executing on our system.  This is a general problem with the idea of judging the cleanliness or trustworthiness of a program by the identity of the agency signing it: if that agency makes just one mistake, there will be a malicious piece of software out there with the agency's signature on it, and unless the signature infrastructure allows by-object revocation ("if we receive the object with checksum X, treat it as unsigned even though it appears to be signed by A"), the only alternative is to revoke the agency's signing key entirely and start over from scratch, redistributing a new set of objects signed by the so-far-mistake-free key.

 


Deciding who to trust is clearly important in any system based on digital signatures.  Left to themselves, individual users will make poor trust decisions now and then.  When presented with a dialog whose options are essentially "Continue with what we were doing by trusting person X" or "Cause the current operation to fail", users almost invariably choose the former, because it lets them get on with whatever they were doing, and because in practice it only rarely has negative consequences.  Still, such casual trust decisions happening all over a company can be expected to quickly dilute whatever security the signature scheme originally offered.  To avoid this, administrators will want to have control over the trust-lists of their users.  There are unsolved problems here, though, as well.  If only a few signers are trusted, then those signers will quickly become the bottleneck in application development; either they will be overloaded with new programs to sign and therefore slow down the development process, or people who might have taken advantage of the programmability of modern systems will be put off by the signing process, and continue to do things in inefficient manual ways rather than writing new programs or macros.  On the other hand, if many signers are trusted, the odds that one of them will be careless and become infected increases, and of course such an infection will be able to spread despite the security system.

 


The Office 2000 macro-signing system, as well as the security offered by Microsoft ActiveX, depend on an all-or-nothing approach to security.  If we give a macro or ActiveX control permission to run at all, it runs with our full privileges, and can do anything that any program run by we can do.  The same applies to a script received as an attachment to a mail message; if we allow it to run at all rather than simply deleting it, it can do anything that we can do, including erasing our files, sending hundreds of copies of itself in email under our name, and so on.

 


Rather than allowing any program that runs to do anything it wants to do, might we derive some advantage from limiting in a more fine-grained way what some programs can do?  Can we use cryptography-based digital signatures to determine who vouches for a program, and then use that to determine what it should be allowed to do?  Perhaps most programs don't require any but the most benign functions, and therefore don't need to be signed, and the programs that do require special privileges and powers will be few enough that they will not overload a central signing authority.  


 


Stepping back for a moment to look at the problem from afar, this seems like just what we want.  Viruses and other Trojan horses work by exploiting trust relationships.  In a discretionary access control system (which the vast majority of security systems currently in use are), I am permitted to read certain files because I am trusted not to abuse or wantonly distribute the information I find there.  I am permitted to write to certain files because I am trusted not to implant any dangerous or destructive code there.  But of course within the computer I cannot do anything directly myself, I can only run programs.  If one of those programs is malicious, and is able to run with my full privileges, it can exploit the trust that has been placed in me.  It can steal secrets that I would never steal, by executing as me.  It can plant copies of itself in programs that I would never sabotage, by doing so as me.  If we can break the ability, in at least most circumstances, for malicious code to run as though it were me, we should be able to go at least some way toward preventing viruses and related threats.

 


 


Java 2, the most recent version of Sun's Java family of products, offers similar granular execution control.  A user can specify, for each kind of activity that the Java runtime environment controls, which Java programs should be allowed to carry out those activities; the programs can be specified by signer, by codebase (i.e. by where on the Web the program is loaded from), or both (see figure 5).
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Because there are no native Lotus Notes or Java viruses active in the wild, it's hard to judge how well this sort of granular execution control actually does in preventing viruses.  There are difficult problems that the current systems have just begun to address; again, users will tend to be impatient with complex configuration tasks (or even simple configuration tasks), and will tend to press whichever button seems most likely to let them get on with their current activity.  The original Java 2 implementation required users to use the policy tool (illustrated in figure 5), or to manually edit a security policy file in order to authorize programs signed by a new signer to take otherwise-prohibited actions on their systems.  It is suggestive that in a later release of Java 2, Sun added an additional security policy which bypasses all the complexity and power of the granular system, and simply asks the user at runtime "should this program signed by this signer by given full run of the machine?".  The fact that Sun felt the need to introduce this very simple, but arguably much less secure, path into the system suggests strongly that we still do not know how to make a system that is sufficiently trivial to use that users will actually tolerate it, while at the same time not offering a simple "bypass security entirely?" button for them to push.

 


We believe that the technology of granular execution control, backed by strong cryptographic digital signatures, will go a long way toward increasing the security of our systems in general, and that such security is vitally needed in a world where code is increasingly mobile and increasingly likely to reach systems other than the one on which it was written.  If we had had functioning granular execution control the LoveLetter virus would not have spread, because a piece of code signed by a stranger in the Philippines would not have been allowed to send out hundreds of copies of itself in electronic mail.  Similarly, a Win32 Trojan horse arriving at a victim's system would fail to install, since a random program signed by a stranger, or not signed at all, would not be allowed to alter the registry, or install itself in the TCP/IP stack.  On the other hand, a granular execution control system in which the majority of users have at some point in the past pushed the "trust absolutely everyone to do absolutely everything" button, just to get rid of those annoying security popups, will do us little good at all.  Finding a way to do the former without falling into the latter is a challenge that we are just beginning to face.

 

Note that we don't mean to imply that granular execution control, if we figure out how to do it right, will completely eliminate the virus problem.  Sometimes I will still unknowingly run a malicious program with just a little too much privilege, and it will begin to spread as viruses always have along the existing lines of trust.  We will still need known-virus scanning, and we will still need an immune system.  But, complementing those facilities, we believe that granular execution control systems built on cryptographic signatures will play an important role in making our systems secure into the future.

 

Conclusion
 


We have briefly surveyed the uses of cryptography in viruses, in anti-virus software, and in general security systems as they apply to viruses and related threats.  While cryptographic techniques alone are only tools, far removed from the finished working systems that we need to build, they are potentially useful tools.  In some cases cryptography can actually make virus protection more difficult; we have tried to outline those cases and the various methods that can be used to overcome that difficulty.  In some cases cryptography is irrelevant to virus protection.  But in some cases, digital signatures in particular, we believe that cryptography will play an important role in the way our systems are secured in the future, both against viruses and against the more general class of emerging threats.

Antivirus approach:


The ideal solution to the threat of virus is prevention. Do not allow a virus to get into the system in the first place. This goal is, in general impossible to achieve although prevention can reduce the no of successful viral attack. The next best approach is to be able to do the following –

· Detection:

once the infection has occurred, determine that it has occurred and locate the virus.

· Identification:
Once detection has been achieved, 



identify the specific virus that has infected a program.

· Removal:
Once the specific virus has been identified remove all traces of the virus from the infected program and restores it to its original state. Remove the virus 
from all infected systems so that the 
disease can not spread further.


Advances in virus and antivirus technology go hand in hand. Early viruses were relatively simple code fragments and could be identified and purged with relatively simple antivirus software packages. As the virus arms race has evolved, both virus and, necessarily, antivirus software have grown more complex and sophisticated.


The virus may contain “wildcard” but has essentially the same structure and bit pattern in all copies. Such signature specific scanners are limited to the detection of known viruses.

Another type of first generation scanner maintains a record of the length of programs and looks for changes in length. This antivirus also belongs to first generation and work as in the above procedure.

Types of viruses:
· Parasitic virus: The traditional and still most common form of virus. Parasitic virus attaches itself to executable files and replicates, when the infected program is executed by finding other executable files to infect.

· Memory-resident virus: Lodges in main memory as part of the resident system program. Forms that point on, the virus infect every program that executes.

· Boot sector virus: Infects the master boot record or boot record and spreads when a system is booted from the disk containing the virus.

· Stealth virus: A form of virus explicitly designed to hide itself fro detection of antivirus software.

· Polymorphic virus: A virus that mutates with every infection, making detection by the “signature” of the virus impossible.

Feasibility state:


This antivirus software is technically, economically, operationally, organizationally feasible.

Requirement Analysis:



File handling is used to handle and store the viruses’ digital signature. All the requirements and software requirement specification document is in progress.

Software Required:



(1)
JDK1.5


Note: - Design coding and testing phases are under construction.
